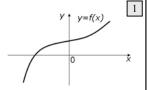
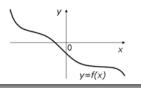


возрастает;



 если двигаться по графику слева направо, то ординаты точек графика всё время уменьшаются («спускаемся



3

5

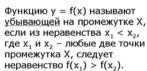
7

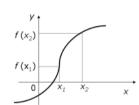
с горки»); говорят, что функция убывает.

Определение 1

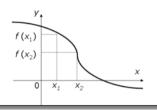
Функцию y = f(x) называют возрастающей на промежутке X, если из неравенства $x_1 < x_2$, где x₁ и x₂ - любые две точки промежутка Х, следует

Определение 2

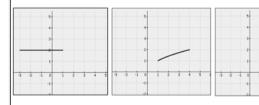




неравенство $f(x_1) < f(x_2)$.

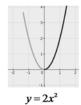


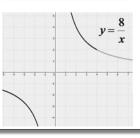
$$y = \begin{cases} 2; & -3 \le x \le 1; \\ \sqrt{x}; & 1 < x \le 4; \\ (x-5)^2 + 1; & 4 < x \le 6. \end{cases}$$



Построить и прочитать график функции

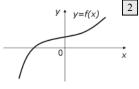
$$y = \begin{cases} 2x^2, & x \le 0; \\ \sqrt{x}, & 0 < x \le 4 \\ \frac{8}{x}, & x > 4. \end{cases}$$



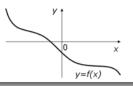


 $y = \sqrt{x}$

Функция возрастает, если большему (меньшему) значению аргумента соответствует большее (меньшее) значение функции.



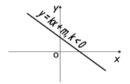
Функция убывает, если большему (меньшему) значению аргумента соответствует меньшее (большее) значение функции.

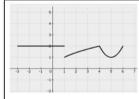


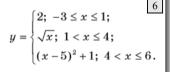
Линейная функция y = kx + m

Если k > 0, то функция возрастает на всей числовой прямой.

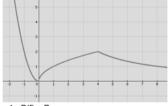
Если *k* < 0, то функция убывает на всей числовой прямой.

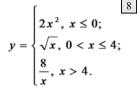






- 1. D(f) = [-3; 6].
- 2. E(f) = [1; 2].
- 3. Постоянна на [-3; 1], возрастает на (1; 4] и [5; 6], убывает на (4; 5].
- 4. Ограничена и сверху, и снизу.
- 5. $y_{\text{наим}} = 1$; $y_{\text{наи6}} = 2$.
- 6. Непрерывна на [-3; 1] и (1; 6], претерпевает разрыв в точке x = 1.
- 7. Выпукла вверх на (1; 4], выпукла вниз на (4; 6].





- 1. D(f) = R.
- E(f) = [0; +∞).
- 3. Функция убывает на (-∞; 0] и [4; +∞), возрастает на [0; 4].
- 4. Функция ограничена снизу, но не ограничена сверху.
- у_{наим} = 0 при x = 0, у_{наиб}. не существует.
- 6. Функция непрерывна.
- 7. Функция выпукла вниз на (-∞; 0] и [4; +∞), выпукла вверх на отрезке [0; 4].

Простейшие функции и их свойства

9

Свойства функции

- Область определения функции D(y).
- 2. Множество значений функции Е(у).
- 3. Четность функции.
- 4. Промежутки монотонности (промежутки возрастания и убывания функции).
- 5. Ограниченность функции.
- Наибольшее и наименьшее значение функции. 6.
- 7. Непрерывность функции.
- Выпуклость функции.

Функции

10

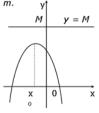
- 1. Линейная функция y = kx + m.
- 2. Квадратичная функция $y = kx^2$.
- 3. Функция y = 0

11 Ограниченность функции Наибольшее и наименьшее значения функции

Функция y = f(x) называют ограниченной снизу на множестве $X \subset D(f)$:

- если все значения функции на множестве Х больше некоторого числа:
- если существует число m такое, что для любого значения $x \in X$ выполняется неравенство f(x) > m.





Число m называют наименьшим значением функции

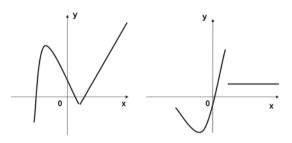
y = f(x) на множестве $X \subset D(f)$, если:

- 1) в **X** существует такая точка x_0 , что $f(x_0) = m$;
- 2) для всех **x** из **X** выполняется неравенство $f(x) ≥ f(x_0)$.

Число М называют наибольшим значением функции y = f(x) на множестве $X \subset D(f)$, если:

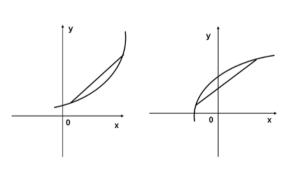
- 1) в **X** существует такая точка x_0 , что $f(x_0) = M$;
- 2) для всех **x** из **X** выполняется неравенство $f(x) \le f(x_0)$.

Непрерывность функции



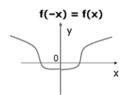
Выпуклость функции

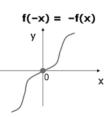
16



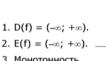
Четные и нечетные функции

- 1. Область определения функции D (f) симметричное множество.
- 2. Для любого $x \in X$ выполняется равенство:





Свойства линейной функции y = kx + m



3. Монотонность

k > 0 возрастающая

k < 0 убывающая

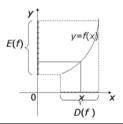
- 4. Не ограничена ни сверху, ни снизу.
- 5. Нет ни наибольшего, ни наименьшего значений.
- 6. Функция непрерывна.

Свойства функции $y = kx^2$ 17 1. $D(f) = (-\infty; +\infty)$. 2. $E(f) = [0; +\infty)$ при k > 0;х $E(f) = (-\infty; 0]$ при k < 0. 3. Промежутки монотонности k > 0убывает на луче (-∞;0], убывает на луче $[0;+\infty)$, возрастает на луче $[0; +\infty)$ возрастает на луче (-∞;0]

- 4. Ограничена снизу
- 5. $y_{\text{наим}} = 0$; $y_{\text{наи6}}$ не существует
- 4. Ограничена сверху у_{наим} – не существует;
 - $y_{\text{наи6}} = 0$
- 6. Непрерывна.
- 7. Выпукла вниз
- 7. Выпукла вверх

Взаимно обратные функции

Если каждому значению х из некоторого множества действительных чисел поставлено в соответствие по определённому правилу f число y, то говорят, что на этом множестве определена функция.



Если функция y = f(x) принимает каждое своё значение 21 только при одном значении х, то эту функцию называют обратимой.

$$y = 2x + 2;$$

$$y = 2 + \frac{1}{x};$$

$$y = x^{3}.$$

$$y = x^{2}$$

$$x_{1} = \sqrt{y}$$

$$x_{2} = -\sqrt{y}$$

Пусть y = f(x) – обратимая функция. Тогда каждому у из множества значений функции соответствует одно определённо число x из области её определения, такое, что f(x) = y.

Это соответствие определяет функцию x от y, обозначим x = g(y). Поменяем местами x и y: y = g(x).

Функцию y = g(x) называют обратной к функции y = f(x).

Свойства функции $y = \overline{k}$ 18 1. $D(f) = (-\infty; 0) \cup (0; +\infty)$ 2. $E(f) = (-\infty; 0) \cup (0; +\infty)^{-3}$ 3. Монотонность k > 0

функция убывает на промежутках ($-\infty$; 0) и (0; $+\infty$). промежутках ($-\infty$; 0) и (0; $+\infty$).

функция возрастает на

- 4. Не ограничена ни сверху, ни снизу.
- 5. Нет ни наименьшего, ни наибольшего значений.
- 6. Функция непрерывна на $(-\infty; 0)$ и $(0; +\infty)$.

Прямая задача

19

Обратная задача

20

Дана функция y = f(x). Найдите значение у при заданном значении х.

Дана функция y = f(x). Найдите значение х при заданном значении у.

Дано: y = 2x + 3.

Дано: y = 2x + 3, y(x) = 42.

Найти: у(5).

Найти: х.

Решение:

Решение: 42 = 2x + 3;

Ответ: y(5) = 13.

 $y(5) = 2 \cdot 5 + 3 = 13.$

2x = 39;

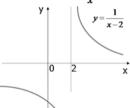
x = 19,5.

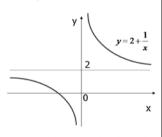
Ответ: y(19,5) = 42.

Найти функцию, обратную к данной. Дано: v =

Решение: $\frac{1}{x-2} = y$, $x-2 = \frac{1}{y}$, $x=2+\frac{1}{y}$, $\implies y=2+\frac{1}{x}$.

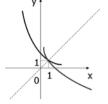
Ответ: y(x) = 2 +

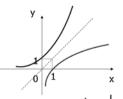




- 1. $D(y) = (-\infty; 2) U(2; +\infty)$
- 1. $D(y) = (-\infty; 0) U(0; +\infty)$
- 2. $E(y) = (-\infty; 0) \cup (0; +\infty)$
- 2. $E(y) = (-\infty; 2) U(2; +\infty)$

Построить график функции, обратной к данной 23





Дано: $y = x^3$. Построить функцию, обратную к данной. Решение: $x^3 = y$,

 $x = \sqrt[3]{v} \Rightarrow v = \sqrt[3]{x}$

