Л. Кокорева,
школа-лицей № 4, г. Саранск
Треугольник в курсе
«Практическая геометрия»
5 класс
Тема урока: «Треугольник. Виды треугольников»
Цели урока:
- развить представление о многоугольнике;
- вывести понятие треугольника и его элементов, познакомиться с классификацией треугольников по сторонам и углам;
Из опыта практической деятельности получить вывод о сумме углов треугольника.
Оборудование: слайды для кодоскопа; модели треугольников разных видов; модели тетраэдра; печатные карточки.
Ход урока
I. Урок начинается с беседы учителя.
- Среди множества различных фигур на плоскости выделяется большое семейство многоугольников. Слово «многоугольник» указывает на то, что у всех фигур из этого семейства «много углов». Для определения многоугольника важно указать, что эта фигура ограничена замкнутой ломаной линией, звенья которой не пересекают друг друга.
- Какая из фигур, изображенных на рисунке 1, является многоугольником?
Рис. 1
- Чем отличаются многоугольники 2 и 3 на рисунке 1?
- Каким наименьшим числом можно заменить «много» в слове «многоугольник»?
[Числом 3.]
Значит, самым простым многоугольником является треугольник. Знакомый всем нам с детства треугольник таит в себе немало интересного и загадочного.
II. На экране изображен треугольник ABC (рис. 2). (Вводятся названия основных его элементов и делается запись в тетрадях.)
D ABC: A, B, C – вершины;
AB, BC, CA – стороны;
РA, РB, РC – углы.
Рис. 2
Задание. Измерьте углы D ABC и вычислите их сумму. (Большинство учащихся получают результат, равный 180°.)
Вывод: сумма градусных мер углов треугольника равна 180°.
Задачи
1. В треугольнике один из углов равен 65°, а другой 80°. Чему равен третий угол этого треугольника?
2. В треугольнике ABC градусная мера угла B равна 40°, а градусная мера угла A в три раза больше. Найдите градусную меру угла C.
III. Физкультурная пауза
Раз – согнуться – разогнуться,
Два – нагнуться, потянуться.
Три – в ладоши три хлопка,
Головою три кивка.
На четыре – руки шире,
Пять, шесть – тихо сесть.
Семь, восемь – лень отбросим.
IV. Продолжим знакомство с треугольниками. (Учитель обращает внимание на модели треугольников, размещенные на магнитной доске.)
Ты на меня, ты на него,
На всех нас посмотри:
У нас всего, у нас всего,
У нас всего по три.Все в нашем городе – друзья,
Дружнее не сыскать.
Мы треугольников семья.
Нас каждый должен знать!
- Все большое семейство треугольников можно разделить на группы в зависимости от сторон и углов. (По ходу введения видов треугольников заполняется таблица (рис. 3) в печатной тетради.)
Вид треугольника | Равнобедренный | Раяносторонний | Разносторонний |
Прямоугольный | |||
Тупоугольный | |||
Остроугольный |
Рис. 3
- На карточках, имеющихся на каждом столе, изображены различные треугольники (рис. 4). Определите на глаз вид каждого треугольника.
Рис. 4
Задача. Из шести одинаковых палочек сложите четыре равных треугольника.
[Тетраэдр.]
Демонстрируются: каркасная модель тетраэдра, модели пирамид, октаэдра.
V. Задание на дом
Тема урока: «Свойства равнобедренного и равностороннего треугольников»1. Составьте рисунки из геометрических фигур (преимущественно из треугольников), узоры из треугольников.
2. Найдите или сочините стихи, рассказы, сказки по теме «Треугольник».
Цели урока:
- развить представление о треугольниках;
- изучить терминологию, связанную с понятиями равнобедренного и равностороннего треугольников;
- открыть неизвестные ранее свойства равнобедренного и равностороннего треугольников;
- продолжить построение треугольников с заданными свойствами на нелинованной бумаге;
- учить детей анализу задач на построение.
Оборудование: схема-классификация треугольников; выставка рисунков учащихся (на предыдущем уроке было задано домашнее задание – выполнить рисунки с использованием изображения треугольника); слайды с изображениями треугольников.
Ход урока
I. Организационный момент
Проверка готовности к уроку (наличие чертежных инструментов, нелинованной бумаги).
II. Два ученика получают задания и выполняют их на доске.
1. Начертите прямоугольный треугольник так, чтобы стороны, образующие прямой угол, были равны 3 дм и 5 дм.
2. В треугольнике ABC градусная мера угла A равна 58°, а угла B равна 49°. Вычислите градусную меру угла C.
Четыре ученика получают карточки с заданием и выполняют работу на нелинованной бумаге.
1) Начертите прямоугольный треугольник так, чтобы стороны, образующие прямой угол, были равны 3 см и 5 см.
2) Взяли проволоку длиной 17 см и из нее сделали треугольник, две стороны которого равны 5 см и 6 см. Каков вид этого треугольника?
С остальными учениками проводится фронтальный опрос.
1. Назовите треугольники, изображенные на доске (рис. 5).
2. Назовите вершины D MKN.
3. Назовите стороны D PST.
4. Назовите углы D ABC.
[Р ABC, Р BCA, Р BAC.]
5. Может ли быть треугольник с двумя прямыми углами? С двумя тупыми углами? Ответ обоснуйте.
6. Существует ли треугольник, все углы которого больше 70°? Меньше 50°?
Рис. 5
7. По схеме (рис. 6) повторяются виды треугольников.
Вид треугольника | Равнобедренный | Раяносторонний | Разносторонний |
Прямоугольный | |||
Тупоугольный | |||
Остроугольный |
Рис. 6
8. Определите «на глаз» вид каждого из треугольников, изображенных на слайдах (рис. 7).
Рис. 7
III. Ученики, работающие по карточкам, сдают выполненное задание. Те, кто работал у доски, рассказывают, как выполняли задание. Дополнительные вопросы им задают ученики.
IV. Итак, на предыдущем уроке мы познакомились с треугольником и изучили их виды.
- Как же построить равнобедренный треугольник с помощью циркуля и линейки?
- Ученики предлагают провести произвольный отрезок, затем из концов отрезка как из центров, не меняя раствора циркуля, провести дуги до пересечения. Точку пересечения соединить с концами отрезка.
- Почему вы уверены, что получился равнобедренный треугольник?
(Взяли раствор циркуля, не равный построенному отрезку и провели дуги равных окружностей. Точка их пересечения находится на равном расстоянии от концов отрезка.)
- Вводится название сторон: основание, боковые стороны (рис. 8).
D ABC: AB = BC, РA = РC.
Рис. 8
- Измерьте углы при вершинах A и C.
Большинство учеников получают равные градусные меры, и учитель сообщает, что именно таким образом в Древней Греции практическим путем установили, что «углы при основании» равны. И лишь много лет спустя это было доказано.
V. Физкультурная пауза
Буратино потянулся,
Раз – нагнулся, два – нагнулся.
Руки в стороны развел,
Ключик, видно, не нашел.
Чтобы ключик нам достать,
Нужно на носочки встать.
(Ученики повторяют за учителем все движения.)
VI. Продолжаем работу.
- Соедините вершину B с серединой противоположной стороны. Измерьте углы BMC и BMA. Что вы получили?
Ученики делают вывод: РBMC = РBMA = 90° и дополняют рисунок. Используя модель равнобедренного треугольника, учитель перегибает модель по отрезку BM. Ученики замечают, что треугольники ABM и BMC при наложении совпали, и делают вывод: D ABM = D BMC.
VII. Задание на дом
1. Постройте равнобедренный треугольник.
2. Измерьте все его углы. Сделайте вывод.
3. Проведите отрезки, соединяющие вершины с серединами противоположных сторон. Что вы заметили?
VIII. Учащиеся зачитывают сказки и стихи собственного сочинения по теме «Треугольник».
Тема урока: «Построение треугольников. Равенство треугольников»Цели урока:
- научить учеников строить треугольник, равный данному, используя циркуль и линейку;
- из опыта практической деятельности учащиеся должны понять, что треугольники равны по трем элементам; каждая сторона треугольника меньше суммы двух других.
Оборудование: у каждого ученика набор чертежных инструментов, цветная бумага, ножницы.
Ход урока
I. Работа с классом
На доске изображены фигуры.
Задания
1. На рисунке 9 проведите прямую так, чтобы она разбила четырехугольник на два треугольника. Определите «на глаз» вид получившихся треугольников.
Рис. 9
2. Проведите прямую так, чтобы она разбила четырехугольник (рис. 10) на треугольник и четырехугольник, а на рисунке 11 – на треугольник и пятиугольник.
|
|
3. Проволоку длиной 15 см согнули так, что получился разносторонний треугольник. Чему равен периметр этого треугольника?
4. Основание равнобедренного треугольника равно 4 см, а боковые стороны вдвое больше основания. Найдите периметр треугольника.
5. В равнобедренном треугольнике один из углов равен 64°. Найдите два других угла этого треугольника.
II. Работа в группах из четырех человек
(Задание для каждой группы с разными данными.)
- Постройте треугольник ABC, если:
1) AB = 5 см, AC = 8 см, Р BAC = 50°;
2) CA = 4 см, CB = 6 см, Р ABC = 120°;
3) AB = 7 см, Р CAB = 60°, Р CBA = 30°;
4) OP = 4 см, Р KOP = 20°, Р OPK = 70°;
5) KL = 4 см, LM = 3 см, MK = 2,5 см;
6) AB = 3 см, BC = 4 см, AC = 5 см.
Три группы из шести групп рассказывают, как проводили построение.
- Вырежьте получившийся треугольник. Сравните его с треугольниками, построенными учениками из своей группы.
В каждой группе получили равные треугольники. Казалось бы, ничего удивительного нет, данные были одинаковы, но ...
III. Общее задание
- Постройте треугольник, в котором Р A = 30°, Р B = 60°, Р C = 90°.
- Что вы замечаете? Какой вывод можно сделать? (У всех разные треугольники.)
IV. Работа в группах
(Задание одинаково для пар групп.)
- Постройте треугольники, у которых стороны равны:
1) 6 см, 2 см, 3 см;
2) 6 см, 2 см, 4 см;
3) 6 см, 2 см, 7 см.
В ходе построений и рассуждений ученики приходят к выводу, что у треугольника каждая сторона меньше суммы двух других сторон, в противном случае треугольник построить невозможно.
V. Минутка отдыха
- Передайте свое настроение с помощью изображения треугольника.
Кто-то раскрашивает треугольник в разные цвета, кто-то составляет фигурки из треугольников, кто-то изображает рожицы, проявляя выдумку и фантазию (рис. 12, 13).
|
|
VI. Проверочная работа
Вариант 1
1. Постройте равнобедренный тупоугольный
треугольник.
2. В треугольнике DCE РD = 24°, РC = 58°. Най-дите РE.
3. Основание равнобедренного треугольника
равно 6 см, а боковые стороны в три раза больше.
Найдите периметр треугольника.
4. Постройте треугольник, в котором AB = 4 см, РBAC = 35°, РCBA = 80°.
Вариант 2
1. Постройте равнобедренный остроугольный
треугольник.
2. В треугольнике MNL РM = 64°, РN = 57°. Найдите РL.
3. Основание равнобедренного треугольника
равно 8 см, а боковые стороны в три раза больше.
Найдите периметр треугольника.
4. Постройте треугольник, в котором AB = 4 см, AC
= 3 см, РBAC = 60°.
Тема изучается на сдвоенном уроке. Учащиеся работают в группах, им предоставлена возможность общаться друг с другом и с учителем, каждому самостоятельно строить процесс познания. Активная самостоятельная работа мысли начинается только тогда, когда перед человеком возникают проблемы. А решение проблемы довольно часто начинается с озарения, когда устанавливается мостик между известным и неизвестным.
.