Главная страница «Первого сентября»Главная страница журнала «Математика»Содержание №36/2002

История математики на уроках

Г. Самойлик,
методист ОНЦ ЗОУКО, Москва

Проценты

5  класс

В этом разделе школьной программы 5-го класса хорошо было бы рассказать учащимся об истории возникновения процентов, а также об истории появления на свет знака процента.

Итак, слово процент от латинского слова pro centum, что буквально означает «за сотню» или «со ста». Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян. Ряд задач клинописных табличек посвящен исчислению процентов, однако вавилонские ростовщики считали не «со ста», а «с шестидесяти». Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы.

Долгое время под процентами понимались исключительно прибыль или убыток на каждые сто рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).

Знак % происходит, как полагают, от итальянского слова cento (сто), которое в процентных расчетах часто писалось сокращенно cto. Отсюда путем дальнейшего упрощения в скорописи буква t превратилась в наклонную черту (/), возник современный символ для обозначения процента (см. схему, которую можно использовать на уроке).

В учебнике Н.Я. Виленкина, В.И. Жохова, А.С. Чеснокова и С.И. Шварцбурда «Математика, 5», вышедшем в издательстве «Мнемозина» в 1996 г. в рубрике «История математики» (с. 337) дана еще одна достаточно любопытная версия возникновения знака %. Там, в частности, говорится, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 г. в Париже была опубликована книга-руководство по коммерческой арифметике, где по ошибке наборщик вместо cto напечатал %.

В названном учебнике содержатся также достаточно полезные с точки зрения общего развития дополнительные сведения, касающиеся промилле (от латинского «с тысячи») – десятой части процента. Сказать учащимся об этом нужно, указав при этом его обозначение ‰.

Вообще, изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию.

В качестве опорного сигнала к этому уроку может быть использован следующий плакат:

Он может сопровождаться, в частности, таким комментарием: «Римляне брали с должника лихву (т. е. деньги сверх того, что дали в долг). При этом говорили: «На каждые 100 сестерциев долга заплатить 16 сестерциев лихвы».

У учителя может возникнуть вопрос: а какие старинные задачи можно решать в этой теме с учащимися? Что ж, если таких задач учитель не найдет, то ему придется самому сочинить их.

Задачи с историческими сюжетами учитель с легкостью может составить сам, например, путем переформулировки некоторых задач, изложенных в учебнике 5-го класса. Ему просто следует ввести в такие задачи старинный сюжет. Разумеется, главное в составлении таких задач – фантазия, эрудиция и понимание цели образовательных задач.

Приведу примеры двух задач исторического содержания, которые были составлены для работы в 5-м классе по теме «Проценты».

Задача 1. Один небогатый римлянин взял в долг у заимодавца 50 сестерциев. Заимодавец поставил условие: «Ты вернешь мне в установленный срок 50 сестерциев и еще 20% от этой суммы». Сколько сестерциев должен отдать небогатый римлянин заимодавцу, возвращая долг?

Ответ: 60 сестерциев.

Задача 2 (более сложная). Некий человек взял в долг у ростовщика 100 р. Между ними было заключено соглашение о том, что должник обязан вернуть деньги ровно через год, доплатив еще 80% от суммы долга. Но через 6 месяцев должник решил вернуть свой долг. Сколько рублей он вернет ростовщику?

Ответ: 140 руб.

Теоретический исторический материал по теме «Проценты» учитель может найти в книге И.Я. Депмана и Н.Я. Виленкина «За страницами учебника математики (М., Просвещение, 1989, с. 73).