Решаем задачи по геометрии: решение четырехугольников
Теорема 1. Площадь трапеции равна произведению полусуммы ее оснований на высоту:

Теорема 2. Диагонали трапеции делят ее на четыре треугольника, два из которых подобны, а два другие имеют одинаковую площадь:

Теорема 3. Площадь параллелограмма равна произведению основания на высоту, опущенную на данное основание, или произведению двух сторон на синус угла между ними:

Теорема 4. В параллелограмме сумма квадратов диагоналей равна сумме квадратов его сторон:

Теорема 5. Площадь произвольного выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними:

Теорема 6. Площадь четырехугольника, описанного около окружности, равна произведению полупериметра этого четырехугольника на радиус данной окружности:

Теорема 7. Четырехугольник, вершинами которого являются середины сторон произвольного выпуклого четырехугольника, есть параллелограмм, площадь которого равна половине площади исходного четырехугольника:

Теорема 8. Если у выпуклого четырехугольника диагонали взаимно перпендикулярны, то суммы квадратов противоположных сторон этого четырехугольника равны:
AB2 + CD2 = BC2 + AD2.

Статья опубликована при поддержке компании "ДКРОСТ". Горки детские, домики, песочницы и многое другое - изготовление и продажа детских площадок оптом и в розницу. Самые низкие цены, скидки, сжатые сроки изготовления, выезд и консультация специалиста, гарантия качества. Узнать подробнее о компании, посмотреть каталог товаров, цены и контакты Вы сможете на сайте, который располагается по адресу: http://dkrost.ru/.
Доказательства некоторых теорем
Доказательство теоремы 2. Пусть ABCD — данная трапеция, AD и BC — ее основания, O — точка пересечения диагоналей AC и BD этой трапеции. Докажем, что треугольники AOB и COD имеют одинаковую площадь. Для этого опустим из точек B и C на прямую AD перпендикуляры BP и CQ. Тогда площадь треугольника ABD равна
![]()
а площадь треугольника ACD равна ![]()
Так как BP = CQ, то и S∆ABD = S∆ACD. Но площадь треугольника AOB есть разность площадей треугольников ABD и AOD, а площадь треугольника COD — разность площадей треугольников ACD и AOD. Следовательно, площади треугольников AOB и COD равны, что и требовалось доказать.

Доказательство теоремы 4. Пусть ABCD — параллелограмм, AB = CD = a, AD = BC = b,
AC = d1, BD = d2, ∠BAD = α, ∠ADC = 180° – α. Применим к треугольнику ABD теорему косинусов:
![]()
Применив теперь теорему косинусов к треугольнику ACD, получим:

Складывая почленно полученные равенства, получаем, что
что и требовалось доказать.

Доказательство теоремы 5. Пусть ABCD — произвольный выпуклый четырехугольник, E — точка пересечения его диагоналей, AE = a, BE = b,
CE = c, DE = d, ∠AEB = ∠CED = ϕ, ∠BEC =
= ∠AED = 180° – ϕ. Имеем:

что и требовалось доказать.

Доказательство теоремы 6. Пусть ABCD — произвольный четырехугольник, описанный около окружности, O — центр этой окружности, OK, OL, OM и ON — перпендикуляры, опущенные из точки O на прямые AB, BC, CD и AD соответственно. Имеем:

где r — радиус окружности, а p — полупериметр четырехугольника ABCD.

Доказательство теоремы 7. Пусть ABCD — произвольный выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и AD соответственно. Так как KL — средняя линия треугольника ABC, то прямая KL параллельна прямой AC и
Аналогично, прямая MN параллельна прямой AC и
Следовательно, KLMN — параллелограмм. Рассмотрим треугольник KBL. Его площадь равна четверти площади треугольника ABC. Площадь треугольника MDN также равна четверти площади треугольника ACD. Следовательно, ![]()
Аналогично, ![]()
Это значит, что ![]()
откуда вытекает, что ![]()

Доказательство теоремы 8. Пусть ABCD — произвольный выпуклый четырехугольник, у которого диагонали взаимно перпендикулярны, пусть E — точка пересечения его диагоналей,
AE = a, BE = b, CE = c, DE = d. Применим к треугольникам ABE и CDE теорему Пифагора:
AB2 = AE2 + BE2 = a2 + b2,
CD2 = CE2 + DE2 = c2 + d2,
следовательно,
AB2 + CD2 = a2 + b2 + c2 + d2.
Применив теперь теорему Пифагора к треугольникам ADE и BCE, получим:
AD2 = AE2 + DE2 = a2 + d2,
BC2 = BE2 + CE2 = b2 + c2,
откуда вытекает, что
AD2 + BC2 = a2 + b2 + c2 + d2.
Значит, AB2 + CD2 = AD2 + BC2, что и требовалось доказать.

Решения задач
Задача 1. Около круга описана трапеция с углами при основании α и β. Найти отношение площади трапеции к площади круга.

Решение. Пусть ABCD — данная трапеция, AB и CD — ее основания, DK и CM — перпендикуляры, опущенные из точек C и D на прямую AB. Искомое отношение не зависит от радиуса круга. Поэтому будем считать, что радиус равен 1. Тогда площадь круга равна π, найдем площадь трапеции. Так как треугольник ADK прямоугольный, то
![]()
Аналогично, из прямоугольного треугольника BCM находим, что
Поскольку в данную трапецию можно вписать окружность, то суммы противоположных сторон равны:
AB + CD = AD + BC,
откуда находим ![]()
Значит, площадь трапеции есть ![]()
и искомое отношение равно ![]()
Ответ: ![]()
Задача 2. В выпуклом четырехугольнике ABCD угол A равен 90°, а угол C не превосходит 90°. Из вершин B и D на диагональ AC опущены перпендикуляры BE и DF. Известно, что AE = CF. Доказать, что угол C прямой.

Доказательство. Так как угол A равен 90°,
а угол C не превосходит 90°, то точки E и F лежат на диагонали AC. Без ограничения общности мы можем считать, что AE < AF (в противном случае следует повторить все нижеследующие рассуждения с заменой точек B и D). Пусть ∠ABE = α,
∠EBC = β, ∠FDA = γ, ∠FDC = δ. Нам достаточно доказать, что α + β + γ + δ = π. Так как

то
и в частности tg α tg γ = 1. Далее, имеем:

откуда получаем, что
что и требовалось доказать.
Задача 3. Периметр равнобочной трапеции, описанной около круга, равен p. Найти радиус этого круга, если известно, что острый угол при основании трапеции равен α.
Решение. Пусть ABCD — данная равнобочная трапеция с основаниями AD и BC, пусть BH — высота этой трапеции, опущенная из вершины B.
Так как в данную трапецию можно вписать окружность, то 
следовательно, 

Из прямоугольного треугольника ABH находим,

Ответ: 
Задача 4. Дана трапеция ABCD с основаниями AD и BC. Диагонали AC и BD пересекаются в точке O, а прямые AB и CD — в точке K. Прямая KO пересекает стороны BC и AD в точках M и N соответственно, а угол BAD равен 30°. Известно, что в трапеции ABMN и NMCD можно вписать окружность. Найти отношение площадей треугольника BKC и трапеции ABCD.

Решение. Как известно, для произвольной трапеции прямая, соединяющая точку пересечения диагоналей и точку пересечения продолжений боковых сторон, делит каждое из оснований пополам. Итак, BM = MC и AN = ND. Далее, так как в трапеции ABMN и NMCD можно вписать окружность, то
BM + AN = AB + MN,
MC + ND = CD + MN.
Отсюда следует, что AB = CD, то есть трапеция ABCD — равнобокая. Искомое отношение площадей не зависит от масштаба, поэтому мы можем принять, что KN = x, KM = 1. Из прямоугольных треугольников AKN и BKM получаем, что
Записывая вновь уже использованное выше соотношение
BM + AN = AB + MN ⇔
![]()
находим 
Нам требуется вычислить отношение:

Здесь мы использовали тот факт, что площади треугольников AKD и BKC относятся как квадраты сторон KN и KM, то есть как x2.
Ответ: 
Задача 5. В выпуклом четырехугольнике ABCD точки E, F, H, G являются серединами сторон AB, BC, CD, DA соответственно и O — точка пересечения отрезков EH и FG. Известно, что EH = a, FG = b,
Найти длины диагоналей четырехугольника.

Решение. Известно, что если соединить последовательно середины сторон произвольного четырехугольника, то получится параллелограмм. В нашем случае EFHG — параллелограмм и O — точка пересечения его диагоналей. Тогда

Применим к треугольнику FOH теорему косинусов:

Так как FH — средняя линия треугольника BCD, то 
Аналогично, применив теорему косинусов к треугольнику EFO, получим, что

откуда 
Ответ: 
Задача 6. Боковые стороны трапеции равны 3 и 5. Известно, что в трапецию можно вписать
окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно
Найти основания трапеции.

Решение. Пусть ABCD — данная трапеция, AB = 3 и CD = 5 — ее боковые стороны, точки K и M — середины сторон AB и CD соответственно. Пусть, для определенности, AD > BC, тогда площадь трапеции AKMD будет больше площади трапеции KBCM. Так как KM — средняя линия трапеции ABCD, то трапеции AKMD и KBCM имеют равные высоты. Поскольку площадь трапеции равна произведению полусуммы оснований на высоту, то верно следующее равенство:

Далее, так как в трапецию ABCD можно вписать окружность, то AD + BC = AB + CD = 8. Тогда KM = 4 как средняя линия трапеции ABCD. Пусть BC = x, тогда AD = 8 – x. Имеем: 
Значит, BC = 1 и AD = 7.
Ответ: 1 и 7.
Задача 7. Основание AB трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали AC равна a, а длина боковой стороны BC равна b. Найти площадь трапеции.

Решение. Пусть E — точка пересечения продолжений боковых сторон трапеции и CD = x, тогда AD = x, AB = 2x. Отрезок CD параллелен отрезку AB и вдвое его короче, значит, CD является средней линией треугольника ABE. Следовательно, CE = BC = b и DE = AD = x, откуда AE = 2x. Итак, треугольник ABE равнобедренный (AB = AE) и AC — его медиана. Поэтому AC является и высотой этого треугольника, и значит,

Так как треугольник DEC подобен треугольнику AEB с коэффициентом подобия
то 
Ответ: 
Задача 8. Диагонали трапеции ABCD пересекаются в точке E. Найти площадь треугольника BCE, если длины оснований трапеции AB = 30, DC = 24, боковой стороны AD = 3 и угол DAB равен 60°.

Решение. Пусть DH — высота трапеции. Из треугольника ADH находим, что 
Так как высота треугольника ABC, опущенная из вершины C, равна высоте DH трапеции, имеем: 
Далее из подобия треугольников ABE и CDE получаем, что
Следовательно, 

Ответ: 
Задача 9. В трапеции средняя линия равна 4, а углы при одном из оснований равны 40° и 50°. Найти основания трапеции, если отрезок, соединяющий середины оснований, равен 1.

Решение. Пусть ABCD — данная трапеция, AB и CD — ее основания (AB < CD), M, N — середины AB и CD соответственно. Пусть также ∠ADC = 50°, ∠BCD = 40°. Средняя линия трапеции равна полусумме оснований, поэтому
AB + CD = 8. Продлим боковые стороны DA и CB до пересечения в точке E. Рассмотрим треугольник ABE, в котором ∠EAB = 50°. ∠EBA = 40°,
следовательно, ∠AEB = 90°. Медиана EM этого треугольника, проведенная из вершины прямого угла, равна половине гипотенузы: EM = AM. Пусть EM = x, тогда AM = x, DN = 4 – x. Согласно условию задачи MN = 1, следовательно,
EN = x + 1. Из подобия треугольников AEM и DEN имеем:

Это означает, что AB = 3 и CD = 5.
Ответ: 3 и 5.
Задача 10. Выпуклый четырехугольник ABCD описан около окружности с центром в точке O, при этом AO = OC = 1, BO = OD = 2. Найти периметр четырехугольника ABCD.

Решение. Пусть K, L, M, N — точки касания окружности со сторонами AB, BC, CD, DA соответственно, r — радиус окружности. Так как касательная к окружности перпендикулярна радиусу, проведенному в точку касания, то треугольники AKO, BKO, BLO, CLO, CMO, DMO, DNO, ANO — прямоугольные. Применив к этим треугольникам теорему Пифагора, получим, что

Следовательно, AB = BC = CD = DA, то есть ABCD — ромб. Диагонали ромба перпендикулярны друг другу, и точка их пересечения является центром вписанной окружности. Отсюда легко находим, что сторона ромба равна
и значит, периметр ромба равен 
Ответ: 
Задачи для самостоятельного решения
С-1. Около окружности радиуса r описана равнобочная трапеция ABCD. Пусть E и K — точки касания этой окружности с боковыми сторонами трапеции. Угол между основанием AB и боковой стороной AD трапеции равен 60°. Докажите, что EK параллелен AB, и найдите площадь трапеции ABEK.
С-2. В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований, равен 2.
Найдите площадь трапеции.
С-3. Можно ли вокруг четырехугольника ABCD описать окружность, если ∠ADC = 30°, AB = 3, BC = 4, AC = 6?
С-4. В трапеции ABCD (AB — основание) величины углов DAB, BCD, ADC, ABD и ADB образуют арифметическую прогрессию (в том порядке, в котором они написаны). Найдите расстояние от вершины C до диагонали BD, если высота трапеции равна h.
С-5. Дана равнобедренная трапеция, в которую вписана окружность и около которой описана окружность. Отношение высоты трапеции к радиусу описанной окружности равно
Найдите углы трапеции.
С-6. Площадь прямоугольника ABCD равна 48, а длина диагонали равна 10. На плоскости, в которой расположен прямоугольник, выбрана точка O так, что OB = OD = 13. Найдите расстояние от точки O до наиболее удаленной от нее вершины прямоугольника.
С-7. Периметр параллелограмма ABCD равен 26. Величина угла ABC равна 120°. Радиус окружности, вписанной в треугольник BCD, равен
Найдите длины сторон параллелограмма, если известно, что AD > AB.
С-8. Четырехугольник ABCD вписан в окружность с центром в точке O. Радиус OA перпендикулярен радиусу OB, а радиус OC перпендикулярен радиусу OD. Длина перпендикуляра, опущенного из точки C на прямую AD, равна 9. Длина отрезка BC в два раза меньше длины отрезка AD. Найдите площадь треугольника AOB.
С-9. В выпуклом четырехугольнике ABCD вершины A и C противоположны, а длина стороны AB равна 3. Угол ABC равен
угол BCD равен
Найдите длину стороны AD, если известно, что площадь четырехугольника равна 
С-10. В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. Известно, что
AD = 2, ∠ABD = ∠ACD = 90°, и расстояние между точкой пересечения биссектрис треугольника ABD и точкой пересечения биссектрис треугольника ACD равно
Найдите длину стороны BC.
С-11. Пусть M — точка пересечения диагоналей выпуклого четырехугольника ABCD, в котором стороны AB, AD и BC равны между собой. Найдите угол CMD, если известно, что DM = MC,
а ∠CAB ≠ ∠DBA.
С-12. В четырехугольнике ABCD известно, что ∠A = 74°, ∠D = 120°. Найдите угол между биссектрисами углов B и C.
С-13. В четырехугольник ABCD можно вписать окружность. Пусть K — точка пересечения его диагоналей. Известно, что AB > BC > KC,
а периметр и площадь треугольника BKC равны соответственно 14 и 7. Найдите DC.
С-14. В трапеции, описанной около окружности, известно, что BC
AD, AB = CD, ∠BAD =
= 45°. Найдите AB, если площадь трапеции ABCD равна 10.
С-15. В трапеции ABCD с основаниями AB и CD известно, что
∠CAB = 2∠DBA. Найдите площадь трапеции.
С-16. В параллелограмме ABCD известно, что AC = a,
∠CAB = 60°. Найдите площадь параллелограмма.
С-17. В четырехугольнике ABCD диагонали AC и BD пересекаются в точке K. Точки L и M являются соответственно серединами сторон BC и AD. Отрезок LM содержит точку K. Четырехугольник ABCD таков, что в него можно вписать окружность. Найдите радиус этой окружности, если AB = 3,
и LK : KM = 1 : 3.
С-18. В выпуклом четырехугольнике ABCD проведены диагонали AC и BD. При этом ∠BAC =
= ∠BDC, а площадь круга, описанного около треугольника BDC, равна 
а) Найдите радиус окружности, описанной около треугольника ABC.
б) Зная, что BC = 3, AC = 4, ∠BAD = 90°, найдите площадь четырехугольника ABCD.
Ответы:
