Главная страница «Первого сентября»Главная страница журнала «Математика»Содержание №8/2010

Читаем график производной

Регулярно на едином государственном экзамене по математике выпускники сталкиваются с заданием следующего содержания: «По графику производной функции y = f'(x) определите...» Такого рода задания мало представлены в школьных учебниках алгебры и начал анализа, из-за чего ряд учащихся испытывает определенные трудности в их решении. В этой связи хотелось бы поделиться опытом по формированию навыков решения задач, связанных с графиком производной.
Для их успешного решения с учениками нужно повторить (актуализировать) следующие теоретические положения:
• геометрический смысл производной;
• достаточное условие возрастания (убывания) функции на промежутке;
• необходимое и достаточное условия экстремума.
Эти положения желательно зафиксировать в виде формул и схем (особенно они полезны для тех учеников, у которых преобладает наглядно-образное мышление):

Далее в классе целесообразно рассмотреть ключевую задачу: по приведенному графику производной ученики должны придумать (конечно же, с помощью учителя) различные вопросы, относящиеся к свойствам самой функции. Естественно, что эти вопросы обсуждаются, в случае необходимости корректируются, обобщаются, фиксируются в тетради, после чего наступает этап решения этих заданий. Здесь необходимо добиться того, чтобы ученики не просто давали правильный ответ, а умели его аргументировать (доказывать), с использованием соответствующих определений, свойств, правил.
Приведем пример такой задачи: на доске (например, с помощью проектора) учащимся предлагается график производной, по нему было сформулировано 10 заданий (не совсем корректные или дублирующие вопросы отвергались).
Функция y = f(x) определена и непрерывна на отрезке [–6; 6].
По графику производной y = f'(x) определите:


1) количество промежутков возрастания функции y = f(x);
2) длину промежутка убывания функции y = f(x);
3) количество точек экстремума функции y = f(x);
4) точку максимума функции y = f(x);
5) критическую (стационарную) точку функции y = f(x), которая не является точкой экстремума;
6) абсциссу точки графика, в которой функция y = f(x) принимает наибольшее значение на отрезке [0; 4];
7) абсциссу точки графика, в которой функция y = f(x) принимает наименьшее значение на отрезке [–2; 2];
8) количество точек графика функции y = f(x), в которых касательная перпендикулярна оси Oy;
9) количество точек графика функции y = f(x), в которых касательная образует с положительным направлением оси Ox угол 60°;
10) абсциссу точки графика функции y = f(x), в которой угловой коэффициент касательной принимает наименьшее значение.
Ответ: 1) 2;  2) 2;  3) 2;  4) –3;  5) –5;  6) 4;  7) –1;  8) 3;  9) 4;  10) –2.
Для закрепления навыков исследования свойств функции на дом ученикам можно предложить задачу, связанную с чтением одного и того же графика, но в одном случае — это график функции, а в другом — график ее производной.

Статья опубликована при поддержке форума сисадминов и программистов. На "CyberForum.ru" Вы найдёте форумы о таких темах, как программирование, компьютеры, обсуждение софта, web-программирование, наука, электроника и бытовая техника, карьера и бизнес, отдых, человек и общество, культура и искусство, дом и хозяйство, авто, мото и многое другое. На форуме Вы сможете получить бесплатную помощь. Подробнее Вы узнаете на сайте, который располагается по адресу: http://www.cyberforum.ru/differential-equations/.

Функция y = f(x) определена и непрерывна на отрезке [–6; 5]. На рисунке приведен:
а) график функции y = f(x);
б) график производной y = f'(x).
По графику определите:
1) точки минимума функции y = f(x);
2) количество промежутков убывания функции y = f(x);
3) абсциссу точки графика функции y = f(x), в которой она принимает наибольшее значение на отрезке [2; 4];
4) количество точек графика функции y = f(x), в которых касательная параллельна оси Ox (или совпадает с ней).
Ответы:
а) 1) –3; 2; 4; 2) 3; 3) 3; 4) 4;  
б) 1) –2; 4,6;2) 2; 3) 2; 4) 5.
Для проведения контроля можно организовать работу в парах: каждый учащийся заранее заготавливает на карточке своему партнеру график производной и ниже предлагает 4–5 вопросов на определение свойств функции. На уроках они обмениваются карточками, выполняют предложенные задания, после чего каждый проверяет и оценивает работу партнера.

Кожухов С.